

Case 3.2: Turbulent Flow over the DPW III Wing Alone

Summary of Results

Marco Ceze (marco.a.ceze@nasa.gov)

Case description

Objective:

- Test high-order methods in turbulent transonic flow in three dimensions.
- Stiff discrete system poses a challenge for the nonlinear solver.
- Outputs of interest are lift and drag.

Flow and boundary conditions:

- $M_{\infty} = 0.76$ at $\alpha = 0.5^{\circ}$.
- $Re = 5 \times 10^6$ based on $c_{ref} = 197.556$, fully turbulent.
- Adiabatic no-slip wall, symmetry, characteristics-based farfield.

Gas properties:

- $\gamma = 1.4$ and Pr = 0.71.
- Sutherland's law for viscosity.
- SA or $k\omega$ suggested for turbulence modeling.

Geometry and provided mesh

- 29310 (coasest) cubic hexas generated via agglomeration.
- Original geometry, i.e. blunt trailing edge.

Participants codes and meshes

• University of Wyoming:

- Spalart-Allmaras (ICCFD7 version) turbulence model.
- DG, Lagrange basis, tensor-product on reference domain.
- Roe solver for inviscid flux, SIP for viscous discretization.
- Backward-Euler with exact Jacobian, fGMRES linear solver.
- Uniform *p*-refinement on HOW mesh (various artificial viscosity parameters).
- Runs performed on 1024 Sandybridge cores.

• University of Michigan:

- Spalart-Allmaras (ICCFD7 version) turbulence model.
- DG, Lagrange basis, tensor-product on reference domain.
- Roe solver for inviscid flux, BR2 for viscous discretization.
- CPTC, relaxed line-search, with in-house GMRES and line-Jacobi preconditioner.
- Isotropic h, and hp-adaptation and uniform h and p refinement.
- HOW initial mesh.
- Runs performed on 240 Westmere cores.

Drag convergence versus DOFs

Drag convergence versus DOFs - zoom

C3.2

Lift convergence versus DOFs

Conclusions

- We seem to disagree on the output values.
- Possible causes: geometry representation, artificial viscosity term...
- This case is a good exercise for solvers.